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Application of renormalization to the dynamics of a particle in an infinite square-well potential
driven by an external field
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We analyze by a renormalization method the dynamics of a particle in an infinite square-well potential
driven by an external monochromatic field. This method setup for Hamiltonian systems with two degrees of
freedom allows us to analyze precisely the stability of the trajectories of the particle as a function of the
amplitudes of the external field. We compute numerical valueg ébr which the motion of the particle with
frequencyw is broken and a transition to a chaotic behavior occurs. We obtain the critical furcgiier)
associated with this system as a function of the parameters such as the frequency of the field and the width of
the potential.
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I. INTRODUCTION The system we analyze is a particle of massn an
infinite square-well potentia¥ s of width 2a driven by an
Due to the existence of as many conserved quantities a@xternal monochromatic field with amplitude and fre-
degrees of freedom, the trajectories of an integrable Hamilquency(). The Hamiltonian of this system with 1.5 degrees
tonian system are confined to evolve on invariant rotationaPf freedom is the following:
tori. On a given torus, the dynamics is regular, i.e., conjugate

to a linear flow with frequencw in action-angle coordinates. 2
This regularity is broken by any small perturbation, and cha- H(p,x,t) = p—+VSQ(x)+sxcos{Qt) (1.1)
otic trajectories appear: the phase space of a Hamiltonian T 2m '

system close to integrable is in general a mixture of regular

and chaotic motions. For Hamiltonian systems with two de-
grees of freedom, these invariant rotational tori, also called'nere
KAM (Kolmogorov-Arnold-Moser tori, act as barriers in
phase space.

For a given one parameter family of Hamiltoniafts,}
with H,_, integrable ance the amplitude of the perturba-
tion, it appears from numerical evidences that4ésmaller ande=0. This system has been studied in R¢fs, 12 by
than a critical value denoted.(w), there exists a KAM approximate renormalization methods. Without external
torus with frequencyw, and this torus is broken for larger field, i.e., fore =0, the system is integrable and the motion is
values by resonance or overlapping of resonances. The funperiodic with frequencyw = 7?E/2ma?, whereE denotes
tion w— ¢ (w) is called the critical function associated with the energy of the system. Fer~0, some of these regular
the one-parameter family of Hamiltoniafisl,}. This func-  motions disappear. In particular, there are resonances when
tion contains the information on the existence of invariantthe frequency of the external field is commensurate with
tori in phase space as the parametarcreases. In particular, the frequency of the motion, i.e., whéhis equal to P/Q) w
for e>sup,.gec(w), there is no longer any KAM torus in (P and Q are relatively prime integersThe interaction of
the region of phase space corresponding to the set of frehese resonances breaks up some invariantitothe spirit
guenciesB, and we have large scale stochasticity. of Chirikov's criterion [13,14)). The critical function

Renormalization methods have been defined and studiesd.(w;m,a,Q)) is the critical value of the amplitude of the
numerically for the analysis of stability of Hamiltonian sys- field for which the motion with frequency is broken.
tems with two degrees of freedofh—6]. The aim is to de- The aim of this paper is to apply renormalization to a
scribe the break up of a given invariant torus. The idea is tepecific model and to compute numerically(w;m,a,{}).
set up a transformation that focuses on a specific region diVe use this critical function to locate chaotic zones and to
phase space around the given torus. It acts as a microscopedetermine critical parameters for which large scale stochas-
phase space, looking at the system on smaller scales in phatsgity occurs. We compare some of the results obtained by
space and on longer time scales. The complete renormalizéqe renormalization transformation with the ones obtained by
tion method 2,5,6] is a tool to compute precisely the critical other existing methods, such as Greene’s residue criterion, in
function e;(w). It has been verified that for specific models order to validate the results obtained by renormalization.
(like a forced pendulumthe critical couplings obtained by In Sec. Il we explain the model and give some informa-
renormalization coincide with other methods like Greene’stion on its dynamics. In Sec. Ill we give a short description
residue criterion[7] or Laskar's frequency map analysis of the renormalization method, and in Sec. IV we compute
[8-10. numerically and analyze the critical functien(w;m,a,().

Vso(x)=0 for [x|<a and Vggox)=+= for [x|=a,
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Il. MODEL an odd integer, accumulating Ay =0. The width of thenth

The external field induces resonances in the system wheigsonance zone is approximately equal ige4/n [11]. For
0 =(P/Q)w, wherew is the frequency of the unperturbed large values ok’ the torus with frequency vectaw is bro-
motion, Q) is the one of the external field, ard, Q are  ken by overlapping of resonances. In order to have an esti-
relatively prime integers. Due to the specific form of the mate of the critical value of’ of the breakup of the invari-
interaction between the particle and the field, the larges@nt torus with frequencys, we apply Chirikov’s criterion
resonanced.e., of order of the amplitude of the field are  [13]. For a torus with frequency located between the two
obtained withQ=1 andP odd. This can be seen by writing Primary resonances fi:and 1n+2, the overlapping is ob-
Hamiltonian(1.1) in action-angle variablegl 2], tained when the sum of the two half-widths of these two

, resonances is equal to their distance, i.e., for

4ea 1
H(A @)= —— A~ —5 > —codne— Q). 1
8ma 7% nez N e0=———— (2.5
n odd 4(n+1)2

(2.1

This value overestimates the critical values of the threshold
of the breakup as it has been noticed in Réfl] for this
model. A convenient way to compute the value &f for
which the torus is broken is to set up a complete renormal-
ization[2,5,6,9 in the spirit of Refs[1,14].

There is a resonance wherp=(), which corresponds to
nw={) since p=dH/JA is the frequencyw of the motion.
This resonance will be denotedriin what follows. Hamil-
tonian (2.1) can be mapped into a time-independent Hamil-
tonian with two degrees of freedom by consideringt as

new angle variabl
anhewangle va able, I1l. RENORMALIZATION METHOD

77_2

_ 2 In this section we give a description of the renormaliza-
H(ALA2,¢1,02) 8maz Ar— A, tion method we apply to the model described in the previous
section. First, we shift the actions such that the invariant
_4ea > 1 N torus with frequencyw is located atA;=0 for the unper-
P Odd?COS(WPl ¢2)- turbed Hamiltonian(for &’ =0): Aj=A;—w and A;=A,.
Hamiltonian(2.3) is equal to
(2.2
1
We rescale time by a factdl, i.e., we multiply Hamiltonian HA, @)=w-A'+3(Q-A")?—¢’ 2 — cog v ),
(2.2) by 1/). We notice that this rescaling of time changes v=(n n
the frequency of a quasiperiodic motion of Hamiltoni&r?) noe 3.0)

by a factor(). The new rescaled frequency is new(). We

rescale the action variables by replacind(A,¢) by  whereQ=(1,0) andw=(w,—1).

N TH(A/N, @) with a factor A = 7?/(4ma’()). We notice The renormalization transformation is a mep="R(H)
that the rescaling in the actions does not change the equacting within the family of Hamiltonians of the form
tions of motion. After this rescaling, Hamiltoniai.2) is

equal to HA, @) =w-A+V(Q-A,¢), (3.2
A2 1 and Hamiltonian(3.1) is an element of this family. Further-
H(A, @)= —1—A2—s’ > —codng,+¢,), (2.3  more, Hamiltonian(3.1) is quadratic in the actions; this fea-
2 n odd N ture is useful for a simplification of the implementation of

the transformatiofisee stegg4) below] [5]. However, a simi-
wheres’ is thedimensionlesamplitude of the external field |ar version of the transformatiafbtained by slightly chang-
given by ing the way Step 4 is implementedan be defined and stud-
ied numerically[6,10].

€ The transformatiorR is based on the continued fraction

&= maQ?’ 24 expansion ofw
For ¢’ =0, Hamiltonian(2.3) depends only oiA=(A;,A,) _ 1 _
and the equations of motion show th&{(t) and A,(t) are 0= 1 =[a0,a1,--].
constant, andp,(t)=wt+ ¢; o and @,(t)=—t+¢,4. The ap+
trajectories of the systerf2.3) evolve on three-dimensional gt

energy surfaces in the four-dimensional phase space, and f
e'=0 the trajectories with frequency are confined to
evolve on a two-dimensional torusn the energy surfage
with frequency vectow=(w,—1). Fore’>0, this system P

has an infinite number of main resonandgs/en by the —=[ag,a;, ", a=].
conditionng,+ ¢,~0) located around\;=1/n, wheren is Uk

%e best rational approximates @fare given by the trunca-
tions of its continued fraction expansion:
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The corresponding periodic orbits with frequency vectors.A. Moreover, Q=(1,«) is changed into NaOQ:(aO
(pk/qk,—l), Wthh are Orthogonal to the mOdeBk +a,1)=(a0+a)ﬂ’ with Qrz(l,ar)z(l,(ao_i_a)*l)
=(Ak,p) (# is called “resonance” and is also denoted gjnce the normalization condition we use is that the first
Pk : gk in what follows accumulate at the invariant torus with component of2 is equal to one. The mag— (ay+ @) L is
frequency vectow=(w,—1). This family of periodic Orbits  {he inverse of the Gauss mdp.4), in the sense that ife
satisfies the following relations:|w- v ;| <|w- v/ and =[bg,by,...] thena’ =[ag,bg,by,...]. If we define
lim_...|] - 11| =0, andw, is given by the following equation:
[a|w]=[...,b2,b1,b0|ao,al,a2,...],

=Na "Na w0, (3.3
0 k-1
the map[a|w]—[a’|w’] corresponds to a two-sided Ber-
wherewry,=(1,0) andNai denotes the matrix noulli shift
(ai 1) [...,05,by,bglag,a;5,a5,...]—[...,05,b1,bg,80|a; ,a5,...].
N, = .
%110 Since w<1, the effect of the rescaling of time is that the

. ) , trajectories of the rescaled Hamiltonian correspond to the
The set of the Fourier modes of the perturbation with fre-; a5 of the initial Hamiltonian on a longer time scale.

guency vectorsy, leads to the divergence of perturbation (3) We perform a rescaling of the actionsH is changed

expansions since the small denominators which are equal g,

w- v tend to zero ak increases. The renormalization trans-

formation deals with the modag specifically by nonpertur- A

bative techniques. H' (A, ¢) =)\H(—,¢
The transformatiorR is composed of four steps. A
(1) A shift of resonances constructed from the condition

vi—vy. we impose that cd&y,l)- ¢]=cod9(1,0) - ¢'],

whereay,=[ w 1] is the integer part of»~ 1. This change of

coordinates is performed by a linear canonical transforma- A=20" Yag+a)X(V?), (3.5

tion

with A=\ (H) such that the mean value of the quadratic term
of H' in the variableQ’ - A is equal to £'-A)?/2,

) . where V() denotes the coefficient of the quadratic term of
(A, @)—(A,0")=(Na "ANg @), V(Q-A,¢)=H—w-A in the variableQ- A, and(V®) de-
notes its mean value di,27]2. Since in genera{V(®)) is
which is generated byF(A’,¢)=N, A’-¢. The Hamil-  close to 1/2, the rescaling coefficig@®.5) is larger than one.

tonian expressed in the new coordinates becomes Thus the rescaling in the actions corresponds to a focus in
phase space around the invariant torus with frequesaty
H' (A", ¢ )=H(A,0)= - A+V(Q-A,¢) located approximately &’ - A~0.

— N A +V(Q-N, AN Lo After these three step$] is changed into
0 0 o

H (A= -A+2w 2(ag+ a)X(V?
:Naow'A,+V(NaOQ'A,,N;01¢J’)_ ( §0) o “(ag a)< >

1
’ -1
Thus the new frequency vector is equal NQ w= —0o', XV| - 20 Yag+a) (V) Q"-A,- Na0 @]
wherew' =(w',—1) andw’ is the image ofw by the Gauss
map (4) The fourth step is a canonical transformation that
. . eliminates the nonresonant péienoted ~) of the perturba-
o—o' =0 —[o ] (3.9 tion of H'.

. . .. The choice of the part of the perturbation which has to be
This map corresponds to a shift to the left of the entries iy sigered resonant or nonresonant is somewhat arbitrary.
the continued fraction expansion of the frequency The set of nonresonant modes contains the modes of the
perturbation which are sufficiently far from the resonances
{»} in order to avoid small denominator problems during
the elimination process. A convenient choice concerning the
sonant modes is the skt of integer vectorsv
v,) such that v,|>|v],

w=[ag,a1,as,...]—~w’'=[a;,a5,a3,...].

The main effect of stefll) is to change the frequency vectors

of the Fourier modes of the perturbation according to thd'onre

map >N, 'v. = (v,
(2) We rescale the energy by a facter * (or equiva- |~ ={w=(v1,vy) € 72| v,y|>|v1]}.

lently time by a factorw), i.e., we multiply the Hamiltonian

by 1, and we change the sign of both phase space cool/e notice that Eq(3.3) defining »m.=(qx,px) shows that

dinates A,¢)—(—A,—¢), in order to havew’ as the new p,<q, and k=0. Consequently, the resonances do not be-

frequency vector, i.e., such that the linear term in the actiontong to | ~. At each iteration of the transformation, the fre-

Na o A= — we'-A is rescaled into a term of the form’ quency vector of the considered torus chan@ese we per-
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form unimodular transformationsWe have chosen a unique max_, 4 v;|<L. We observe the convergence of the proper-
regionl~ such that it does not contain any of the resonancejes of the renormalization transformation lagrows.
lines w-v=0 for all we]0,1].

From the form of the eigenvectors Nfai, we can see that IV. CRITICAL FUNCTION OF THE MODEL
each vectorve 72\{0} is mapped intd ~ after a sufficient
number of iterations of the matricedgi (the eigenvector of

N, ' associated with the eigenvalue of modulus larger than The aim is to obtain the valug(w) for ‘{VhiCh the invari-
. . . )
one points intd *). In other terms, each resonant mode be-2Nt t0rus with frequency exists fore’ <e(w) and is bro-

comes nonresonant at a sufficiently smaller scale in phasléen for Iarge_r value_s. . .
space. We notice thal is not an element of , i.e., it is If w satisfies a Diophantine condition, the KAM theorem

resonant [17] ensures the persistence of an invariant torus with fre-
Since the initial Hamiltoniar2.3) is quadratic in the ac- duencyw for the system we consider, i.e.,(w)>0. If wis

tions, the renormalization for quadratic Hamiltonians defined@tional, a resonance breaks up the torus, b@(ml)=0.
in Refs.[5, 9] is well suited for this problem. We define Moreover, this function is symmetricie;(— ) =¢&c(w).

A. Critical function & ()

more precisely step4) for the following Hamiltonians: This symmetry comes from the fact that the canonical trans-
formation (A1, ¢1,A2,0)~>(—A1,—¢1,A;,¢0,)  only
H(A, @)= w - A+m(¢)(Q-A)2+g(@)Q-A+f(p), changes the frequenay into —w in Hamiltonian(2.3).

The critical functione(w) is determined by looking at
wherem, g andf are scalar functions of the angles andthe iterates of the renormalization transformatigh de-
(my#0. We eliminate completely the nonresonant modes ofcribed above, i.e., it is defined by the following equations:
g andf by a canonical transformation connected to the iden-
tity, which is defined by iterating KAM-type transforma-

1
n — . _ . 2 ’ ’
tions. The KAM iterations we perforntby Lie transforma- RHyr = Ho(A)=w-At 2(Q AT for &' <ec(w),

n—o

tions are generated by functions that are linear in the 4.1)
actions. The Hamiltonian expressed in the new coordinates is

again quadratic in the actions. Thus this type of transforma- R'H,, — o for &'>el(w), (4.2
tion allows us to remain quadratic at each step of the trans- N

formation[15]. One iteratiori/s of the KAM transformation
reduces the nonresonant modes afidg from ordere to &2. whereH,, is Hamiltonian(3.1). Numerical work shows that
The transformation that eliminates completely the nonresoEgs. (4.1) and (4.2) define uniquelys(w), i.e., the renor-

nant part is defined in the following way: malization has two main domains: one where the iterations
of the transformation converge to an integrable Hamiltonian
H’'=Hol4y where Un=Us Us o Us o, Hy—this domain is conjectured to be the set of Hamiltonians

that have a smooth invariant torus with frequerey-and a
where the purpose @fs_is to reduce the nonresonant part of domain where the iterations diverge, and this domain is con-
o1 on e, jectured to be the set of Hamiltonians that do not have an
fand gjr(?m ordere® ~toe”, such thatl T'=1"9"=0, i, aant torus with the frequenay. Fore'=el(w), it was
yvherel f. denotes/ the noEm,esonant pa}rti S_f the constant M own numerically that the iterations converge to a strange
in the actions oH’, i.e., I"f'=2,.,-f,e" % Forthe ex-  naqtic attractor containing all the relevant information on
plicit equations of this part of the transformation, we refer tOcritical tori (i.e., at the threshold of the break)uj9]. This
Refs.[5, 16]. L ) _ means that we conjecture that the critical thresholds obtained
In summary, the renormallzatlon transformation acts '”by the complete renormalization coincidep to numerical
the following way. First, some of the resonant modes areecision with the thresholds of the break up of invariant
turned nonresonant by a rescaling of phase space theli |n order to give support to this conjecture, we compare
changes the frequency of the torus according to the Gausfe yalues we obtain with another independent method,
map (3.4). Then an iteration of a KAM-type transformation Greene's residue criterion. This method consists in analyzing
eliminates the nonresonant modey slightly changing the  he stapility of nearby periodic orbitor instance, the ones
resonant ongs The renormalization transformation is & map given by the truncations of the continued fraction expansion
of Fourier coefficients. f of the frequency of the toriis For rigorous results on
Greene'’s criterion, we refer to Refdl8, 19.
HA, @)= A+ D H (Q-A)ke ¢ _Figure 1 shows the yaIL_le aof (w) for c_ue]O,][ deFer-
kv mined by the renormalization method with=20. A first
remark is that the last invariant torus is not the golden mean
then H'=R(H) becomes{H; }=R({H\,}) where k one as itis the case for the standard map and for Escande’s
=0,1,2 in our case. The properties Bf are obtained by paradigm Hamiltonian[9]: The torus with frequencyy
iterating this map. In order to analyze it numerically, we =(1/5—1)/2=[1,1,1,.] is broken for &/()~0.02995
truncate this map, i.e., we truncate the Fourier series by corwhereas, for instance, the torus with frequenoy=(y
sidering frequency vectors v=(vy,v,) such that +3)/5=[1,2,1,1,1,.] persists until &/(w;)~0.03163.
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\ . 1 . . ; ‘ ticular in the region of phase space where the last KAM torus
! breaks up when the parametef is close to its critical

7 valug, the values they obtained overestimate the ones ob-

tained by renormalization. For instance, between 1:1 and 1:3

the critical value they obtained is approximately 0.037

+0.001.

For n= 3, the estimate obtained by Chirikov’s criterion is

. s(3°)~0.156, Escande-Doveil's renormalization gives

~0.0080, whereas Lin and Reichl obtained~0.0081

7 +0.0003. The approximate value ©f obtained by the com-

plete renormalization i&3~0.0068. Again, the same com-

1 ments apply to this case: Lin and Reichl’'s method overesti-
mates the value obtained by renormalization because of the
very slow diffusion of the trajectories between the reso-
nances 1:3 and 1:5 for critical or near-critical values of the

0.03 +

g, 002

e

0.01 -

FIG. 1. Critical function of Hamiltonian systeii3.1).

These two values coincide up to numerical precision with tharametess .
ones obtained by Greene's residue criterion{®)(y) N _
~0.0299 andng)(w1)~0.0316. B. Critical function &.(w;m,a,Q)

The last KAM torus is broken foe* ~0.033 34. Its fre- We have studied the critical function,(w) of Hamil-
guency is equal taw,~0.6976. The critical threshold of the tonian(2.3). This rescaled Hamiltonian is equivalent to the
breakup of this torus with frequency, obtained by initial Hamiltonian (2.2) with maQ?=1 and in particular
Greene’s residue criterion coincides with up to numerical  with a=1, m=1, andQ = 1. For other values ad, m and(},
precision: &{®)(w,)~0.0333. Fors>¢*, there are no in- the critical functions(w;m,a,Q) is equal to
variant tori left, and large scale stochasticity occurs: trajec-
tories can go from the resonance Itdcated atA;=1) to
the resonance O:(located atA;=0).

Between two neighboring main resonances &nd 1n
+2, quasiperiodic motion with frequencywe]1/(n  according to Eq(2.4). We notice that the argument ef is
+2),1h[ can occur for smalt’. If ¢’ is greater than some the rescaledfrequencyw/Q) since time has been rescaled by
value &, there is no longer any quasiperiodic motion in a factor{). Thus the critical function varies like the square of
between these two resonan¢asd some chaotic trajectories the frequency of the field. In particular, the largest value of
can go from one resonance to the ojh&orn=1, this value  the parameter for which an invariant torus persists between
is equal toe* for which all rotational invariant tori are bro- the resonances thi:and 1n+2 varies like
ken since the last invariant torus to break up is located be-
tween the resonances 1:1 and 1:3. We apply Chirikov’s cri- en(Q)=0%,0=1),
terion in order to have an estimate ©f [see Eq(2.5)],

w
sc(w;m,a,Q)=mansé(5),

which is consistent with the numerical results found in Ref.
© 1 [11]. This feature can be generalized to the following one-
€n :_4(n+ 12 parameter family of Hamiltonians:

2
For the largest ona=1, this value is equal to 0.0625 which

is approximately twice the value obtained by renormaliza- H(p.x,t)= %JFVSQ(XHSZ fi(x)gi(Q),

tion. Escande’s approximate renormalization gives 0.0352 as

the critical amplitude of the field for the last invariant torus, where g, are 27 periodic functions. This can be seen by
which is close to the value determined by the completgescaling time by a factof

renormalization method. This feature is expected to be true

for quadratic Hamiltonians in the actions as it was pointed 1 t’
out in Refs[20, 21]. In Ref.[22] it has been noticed that the H' (p,x,t")= —H( P, X, —),
approximate renormalization usually slightly overestimates Q Q

the real critical value.

Lin and Reichl[11] have developed a method adapted to
the specific mode(1.1) to compute the critical amplitudes
en. This method is based on the fact that as soon as the last H(p’ x,t') = iH’(Qp’ x,t')
invariant torus is broken, some trajectories starting near one Y Q R
of the main resonandsay 1 n) can approach the other main
resonance It+2. Since the diffusion of these trajectories The fact that the critical coupling.(w;m,a,(}) is propor-
can be very slowdue in particular to the resonances of low tional tom is general for a particle in an infinite square-well
order between two main neighboring resonances, and in papotential driven by a perturbation dependingoand peri-

and the actions by a factor(Q/
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odically ont. This is obtained by rescaling the momentum by precise information on the stability of Hamiltonian systems
a factor 1m of the Hamiltonian with two degrees of freedom, and in particular it allows to
determine what kind of stable motions remains as a function
of the amplitude of the perturbation. We have checked that
for some specific frequencies, the thresholds obtained by
renormalization coincide with the ones obtained by Greene’s
From the fact that the interaction with the field is propor-residue criterion.

2
H(p,x,t)= ;—m+VSQ(x)+sV(x,t).

tional tox (the interaction is of the forrax f(Qt) wheref is We have chosen to study a particle in an infinite square-
21 periodig, the critical functions(w;m,a, ) is expected well potential driven by an external field because of its sim-
to be proportional ta. plicity, but the renormalization methods are very general and
can be applied directly to other types of Hamiltonian systems

V. CONCLUSION with two effective degrees of freedom.
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