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Application of renormalization to the dynamics of a particle in an infinite square-well potential
driven by an external field
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Service de Physique The´orique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France

~Received 2 November 2000; published 19 March 2001!

We analyze by a renormalization method the dynamics of a particle in an infinite square-well potential
driven by an external monochromatic field. This method setup for Hamiltonian systems with two degrees of
freedom allows us to analyze precisely the stability of the trajectories of the particle as a function of the
amplitude« of the external field. We compute numerical values of« for which the motion of the particle with
frequencyv is broken and a transition to a chaotic behavior occurs. We obtain the critical function«c(v)
associated with this system as a function of the parameters such as the frequency of the field and the width of
the potential.
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I. INTRODUCTION

Due to the existence of as many conserved quantitie
degrees of freedom, the trajectories of an integrable Ha
tonian system are confined to evolve on invariant rotatio
tori. On a given torus, the dynamics is regular, i.e., conjug
to a linear flow with frequencyv in action-angle coordinates
This regularity is broken by any small perturbation, and c
otic trajectories appear: the phase space of a Hamilto
system close to integrable is in general a mixture of regu
and chaotic motions. For Hamiltonian systems with two d
grees of freedom, these invariant rotational tori, also ca
KAM ~Kolmogorov-Arnold-Moser! tori, act as barriers in
phase space.

For a given one parameter family of Hamiltonians$H«%
with H«50 integrable and« the amplitude of the perturba
tion, it appears from numerical evidences that for« smaller
than a critical value denoted«c(v), there exists a KAM
torus with frequencyv, and this torus is broken for large
values by resonance or overlapping of resonances. The f
tion v°«c(v) is called the critical function associated wi
the one-parameter family of Hamiltonians$H«%. This func-
tion contains the information on the existence of invaria
tori in phase space as the parameter« increases. In particular
for «.supvPB«c(v), there is no longer any KAM torus in
the region of phase space corresponding to the set of
quenciesB, and we have large scale stochasticity.

Renormalization methods have been defined and stu
numerically for the analysis of stability of Hamiltonian sy
tems with two degrees of freedom@1–6#. The aim is to de-
scribe the break up of a given invariant torus. The idea is
set up a transformation that focuses on a specific regio
phase space around the given torus. It acts as a microsco
phase space, looking at the system on smaller scales in p
space and on longer time scales. The complete renorma
tion method@2,5,6# is a tool to compute precisely the critica
function «c(v). It has been verified that for specific mode
~like a forced pendulum! the critical couplings obtained b
renormalization coincide with other methods like Green
residue criterion@7# or Laskar’s frequency map analys
@8–10#.
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The system we analyze is a particle of massm in an
infinite square-well potentialVSQ of width 2a driven by an
external monochromatic field with amplitude« and fre-
quencyV. The Hamiltonian of this system with 1.5 degre
of freedom is the following:

H~p,x,t !5
p2

2m
1VSQ~x!1«x cos~Vt !, ~1.1!

where

VSQ~x!50 for uxu,a and VSQ~x!51` for uxu>a,

and«>0. This system has been studied in Refs.@11, 12# by
approximate renormalization methods. Without exter
field, i.e., for«50, the system is integrable and the motion
periodic with frequencyv5Ap2E/2ma2, whereE denotes
the energy of the system. For«Þ0, some of these regula
motions disappear. In particular, there are resonances w
the frequency of the external fieldV is commensurate with
the frequency of the motion, i.e., whenV is equal to (P/Q)v
~P and Q are relatively prime integers!. The interaction of
these resonances breaks up some invariant tori~in the spirit
of Chirikov’s criterion @13,14#!. The critical function
«c(v;m,a,V) is the critical value of the amplitude of th
field for which the motion with frequencyv is broken.

The aim of this paper is to apply renormalization to
specific model and to compute numerically«c(v;m,a,V).
We use this critical function to locate chaotic zones and
determine critical parameters for which large scale stoch
ticity occurs. We compare some of the results obtained
the renormalization transformation with the ones obtained
other existing methods, such as Greene’s residue criterio
order to validate the results obtained by renormalization.

In Sec. II we explain the model and give some inform
tion on its dynamics. In Sec. III we give a short descripti
of the renormalization method, and in Sec. IV we comp
numerically and analyze the critical function«c(v;m,a,V).
©2001 The American Physical Society01-1
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II. MODEL

The external field induces resonances in the system w
V5(P/Q)v, wherev is the frequency of the unperturbe
motion, V is the one of the external field, andP, Q are
relatively prime integers. Due to the specific form of t
interaction between the particle and the field, the larg
resonances~i.e., of order of the amplitude« of the field! are
obtained withQ51 andP odd. This can be seen by writin
Hamiltonian~1.1! in action-angle variables@12#,

H~A,w,t !5
p2

8ma2 A22
4«a

p2 (
nPZ
n odd

1

n2 cos~nw2Vt !.

~2.1!

There is a resonance whennẇ5V, which corresponds to
nv5V sinceẇ5]H/]A is the frequencyv of the motion.
This resonance will be denoted 1:n in what follows. Hamil-
tonian ~2.1! can be mapped into a time-independent Ham
tonian with two degrees of freedom by considering2Vt as
a new angle variable,

H~A1 ,A2 ,w1 ,w2!5
p2

8ma2 A1
22VA2

2
4«a

p2 (
n odd

1

n2 cos~nw11w2!.

~2.2!

We rescale time by a factorV, i.e., we multiply Hamiltonian
~2.2! by 1/V. We notice that this rescaling of time chang
the frequency of a quasiperiodic motion of Hamiltonian~2.2!
by a factorV. The new rescaled frequency is nowv/V. We
rescale the action variables by replacingH(A,w) by
l21H(A/l,w) with a factor l5p2/(4ma2V). We notice
that the rescaling in the actions does not change the e
tions of motion. After this rescaling, Hamiltonian~2.2! is
equal to

H~A,w!5
A1

2

2
2A22«8 (

n odd

1

n2 cos~nw11w2!, ~2.3!

where«8 is thedimensionlessamplitude of the external field
given by

«85
«

maV2 . ~2.4!

For «850, Hamiltonian~2.3! depends only onA5(A1 ,A2)
and the equations of motion show thatA1(t) andA2(t) are
constant, andw1(t)5vt1w1,0 and w2(t)52t1w2,0. The
trajectories of the system~2.3! evolve on three-dimensiona
energy surfaces in the four-dimensional phase space, an
«850 the trajectories with frequencyv are confined to
evolve on a two-dimensional torus~on the energy surface!
with frequency vectorv5(v,21). For «8.0, this system
has an infinite number of main resonances~given by the
conditionnẇ11ẇ2'0! located aroundA151/n, wheren is
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an odd integer, accumulating atA150. The width of thenth
resonance zone is approximately equal to 4A«8/n @11#. For
large values of«8 the torus with frequency vectorv is bro-
ken by overlapping of resonances. In order to have an e
mate of the critical value of«8 of the breakup of the invari-
ant torus with frequencyv, we apply Chirikov’s criterion
@13#. For a torus with frequencyv located between the two
primary resonances 1:n and 1:n12, the overlapping is ob-
tained when the sum of the two half-widths of these tw
resonances is equal to their distance, i.e., for

«~c!5
1

4~n11!2 . ~2.5!

This value overestimates the critical values of the thresh
of the breakup as it has been noticed in Ref.@11# for this
model. A convenient way to compute the value of«8 for
which the torus is broken is to set up a complete renorm
ization @2,5,6,9# in the spirit of Refs.@1,14#.

III. RENORMALIZATION METHOD

In this section we give a description of the renormaliz
tion method we apply to the model described in the previo
section. First, we shift the actions such that the invari
torus with frequencyv is located atA150 for the unper-
turbed Hamiltonian~for «850!: A185A12v and A285A2 .
Hamiltonian~2.3! is equal to

H~A8,w!5v•A81 1
2 ~V•A8!22«8 (

n5~n,1!
n odd

1

n2 cos~n•w!,

~3.1!

whereV5(1,0) andv5(v,21).
The renormalization transformation is a mapH85R(H)

acting within the family of Hamiltonians of the form

H~A,w!5v•A1V~V•A,w!, ~3.2!

and Hamiltonian~3.1! is an element of this family. Further
more, Hamiltonian~3.1! is quadratic in the actions; this fea
ture is useful for a simplification of the implementation
the transformation@see step~4! below# @5#. However, a simi-
lar version of the transformation~obtained by slightly chang-
ing the way Step 4 is implemented! can be defined and stud
ied numerically@6,10#.

The transformationR is based on the continued fractio
expansion ofv

v5
1

a01
1

a11¯

[@a0 ,a1 ,¯#.

The best rational approximates ofv are given by the trunca
tions of its continued fraction expansion:

pk

qk

5@a0 ,a1 , ¯ ,ak5`#.
1-2



or

d
h

:

re
n

al
s-

on

a

i

rs
th

oo

on

rst

r-

e
the

rm

of

s in

at

be
rary.

the
es

ng
the

be-
e-

APPLICATION OF RENORMALIZATION TO THE . . . PHYSICAL REVIEW E 63 046201
The corresponding periodic orbits with frequency vect
(pk /qk ,21), which are orthogonal to the modesnk
5(qk ,pk) ~nk is called ‘‘resonance’’ and is also denote
pk :qk in what follows! accumulate at the invariant torus wit
frequency vectorv5(v,21). This family of periodic orbits
satisfies the following relations:uv•nk11u,uv•nku and
limk→`uv•nku50, andnk is given by the following equation

nk5Na0
¯Nak21

n0, ~3.3!

wheren05(1,0) andNai
denotes the matrix

Nai
5S ai 1

1 0 D .

The set of the Fourier modes of the perturbation with f
quency vectorsnk leads to the divergence of perturbatio
expansions since the small denominators which are equ
v•nk tend to zero ask increases. The renormalization tran
formation deals with the modesnk specifically by nonpertur-
bative techniques.

The transformationR is composed of four steps.
~1! A shift of resonances constructed from the conditi

n1°n0 : we impose that cos@(a0,1)•w#5cos@(1,0)•w8#,
wherea05@v21# is the integer part ofv21. This change of
coordinates is performed by a linear canonical transform
tion

~A,w!°~A,w8!5~Na0

21A,Na0
w!,

which is generated byF(A8,w)5Na0
A8•w. The Hamil-

tonian expressed in the new coordinates becomes

H8~A8,w8!5H~A,w!5v•A1V~V•A,w!

5v•Na0
A81V~V•Na0

A8,Na0

21w8!

5Na0
v•A81V~Na0

V•A8,Na0

21w8!.

Thus the new frequency vector is equal toNa0
v52vv8,

wherev85(v8,21) andv8 is the image ofv by the Gauss
map

v°v85v212@v21#. ~3.4!

This map corresponds to a shift to the left of the entries
the continued fraction expansion of the frequency

v5@a0 ,a1 ,a2 ,...#°v85@a1 ,a2 ,a3 ,...#.

The main effect of step~1! is to change the frequency vecto
of the Fourier modes of the perturbation according to
mapn°Na0

21n.

~2! We rescale the energy by a factorv21 ~or equiva-
lently time by a factorv!, i.e., we multiply the Hamiltonian
by v21, and we change the sign of both phase space c
dinates (A,w)°(2A,2w), in order to havev8 as the new
frequency vector, i.e., such that the linear term in the acti
Na0

v•A52vv8•A is rescaled into a term of the formv8
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•A. Moreover, V5(1,a) is changed into Na0
V5(a0

1a,1)5(a01a)V8 with V85(1,a8)5„1,(a01a)21
…

since the normalization condition we use is that the fi
component ofV is equal to one. The mapa°(a01a)21 is
the inverse of the Gauss map~3.4!, in the sense that ifa
5@b0 ,b1 ,...# thena85@a0 ,b0 ,b1 ,...#. If we define

@auv#5@ ...,b2 ,b1 ,b0ua0 ,a1 ,a2 ,...#,

the map@auv#°@a8uv8# corresponds to a two-sided Be
noulli shift

@ ...,b2 ,b1 ,b0ua0 ,a1 ,a2 ,...#°@ ...,b2 ,b1 ,b0 ,a0ua1 ,a2 ,...#.

Since v,1, the effect of the rescaling of time is that th
trajectories of the rescaled Hamiltonian correspond to
ones of the initial Hamiltonian on a longer time scale.

~3! We perform a rescaling of the actions:H is changed
into

H8~A,w!5lHS A

l
,wD ,

with l5l(H) such that the mean value of the quadratic te
of H8 in the variableV8•A is equal to (V8•A)2/2,

l52v21~a01a!2^V~2!&, ~3.5!

whereV(2) denotes the coefficient of the quadratic term
V(V•A,w)5H2v•A in the variableV•A, and^V(2)& de-
notes its mean value on@0,2p#2. Since in general̂V(2)& is
close to 1/2, the rescaling coefficient~3.5! is larger than one.
Thus the rescaling in the actions corresponds to a focu
phase space around the invariant torus with frequencyv8
located approximately atV8•A'0.

After these three steps,H is changed into

H8~A,w!5v8•A12v22~a01a!2^V~2!&

3VS 2
1

2v21~a01a!^V~2!&
V8•A,2Na0

21wD .

~4! The fourth step is a canonical transformation th
eliminates the nonresonant part~denotedI 2! of the perturba-
tion of H8.

The choice of the part of the perturbation which has to
considered resonant or nonresonant is somewhat arbit
The set of nonresonant modes contains the modes of
perturbation which are sufficiently far from the resonanc
$nk% in order to avoid small denominator problems duri
the elimination process. A convenient choice concerning
nonresonant modes is the setI 2 of integer vectorsn
5(n1 ,n2) such thatun2u.un1u,

I 25$n5~n1 ,n2!PZ2un2u.un1u%.

We notice that Eq.~3.3! defining nk5(qk ,pk) shows that
pk<qk and k>0. Consequently, the resonances do not
long to I 2. At each iteration of the transformation, the fr
quency vector of the considered torus changes~since we per-
1-3
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C. CHANDRE PHYSICAL REVIEW E 63 046201
form unimodular transformations!. We have chosen a uniqu
region I 2 such that it does not contain any of the resona
lines v•n50 for all vP]0,1@ .

From the form of the eigenvectors ofNai
, we can see tha

each vectornPZ2\$0% is mapped intoI 2 after a sufficient
number of iterations of the matricesNai

~the eigenvector of

Nai

21 associated with the eigenvalue of modulus larger th

one points intoI 2!. In other terms, each resonant mode b
comes nonresonant at a sufficiently smaller scale in ph
space. We notice that0 is not an element ofI 2, i.e., it is
resonant.

Since the initial Hamiltonian~2.3! is quadratic in the ac-
tions, the renormalization for quadratic Hamiltonians defin
in Refs. @5, 9# is well suited for this problem. We defin
more precisely step~4! for the following Hamiltonians:

H~A,w!5v•A1m~w!~V•A!21g~w!V•A1 f ~w!,

where m, g, and f are scalar functions of the angles a
^m&Þ0. We eliminate completely the nonresonant modes
g and f by a canonical transformation connected to the id
tity, which is defined by iterating KAM-type transforma
tions. The KAM iterations we perform~by Lie transforma-
tions! are generated by functions that are linear in
actions. The Hamiltonian expressed in the new coordinate
again quadratic in the actions. Thus this type of transform
tion allows us to remain quadratic at each step of the tra
formation@15#. One iterationUS of the KAM transformation
reduces the nonresonant modes off andg from order« to «2.
The transformation that eliminates completely the nonre
nant part is defined in the following way:

H85H+UH where UH5US1
+US2

+¯USn
+¯ ,

where the purpose ofUSn
is to reduce the nonresonant part

f and g from order«2n21
to «2n

, such thatI2 f 85I2g850,
whereI2 f 8 denotes the nonresonant part of the constant t
in the actions ofH8, i.e., I2 f 85(nPI 2 f n8e

i n•w. For the ex-
plicit equations of this part of the transformation, we refer
Refs.@5, 16#.

In summary, the renormalization transformation acts
the following way. First, some of the resonant modes
turned nonresonant by a rescaling of phase space
changes the frequency of the torus according to the Ga
map ~3.4!. Then an iteration of a KAM-type transformatio
eliminates the nonresonant modes~by slightly changing the
resonant ones!. The renormalization transformation is a ma
of Fourier coefficients. If

H~A,w!5v•A1(
k,n

Hk,n~V•A!kei n•w,

then H85R(H) becomes $Hk,n8 %5R($Hk,n%) where k
50,1,2 in our case. The properties ofR are obtained by
iterating this map. In order to analyze it numerically, w
truncate this map, i.e., we truncate the Fourier series by c
sidering frequency vectors n5(n1 ,n2) such that
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maxi51,2un i u<L. We observe the convergence of the prop
ties of the renormalization transformation asL grows.

IV. CRITICAL FUNCTION OF THE MODEL

A. Critical function «c8„v…

The aim is to obtain the value«c8(v) for which the invari-
ant torus with frequencyv exists for«8,«c8(v) and is bro-
ken for larger values.

If v satisfies a Diophantine condition, the KAM theore
@17# ensures the persistence of an invariant torus with
quencyv for the system we consider, i.e.,«c8(v).0. If v is
rational, a resonance breaks up the torus, i.e.,«c8(v)50.
Moreover, this function is symmetric:«c8(2v)5«c8(v).
This symmetry comes from the fact that the canonical tra
formation (A1 ,w1 ,A2 ,w2)°(2A1 ,2w1 ,A2 ,w2) only
changes the frequencyv into 2v in Hamiltonian~2.3!.

The critical function«c8(v) is determined by looking a
the iterates of the renormalization transformationR de-
scribed above, i.e., it is defined by the following equation

RnH«8 →
n→`

H0~A!5v•A1
1

2
~V•A!2 for «8,«c8~v!,

~4.1!

RnH«8 →
n→`

` for «8.«c8~v!, ~4.2!

whereH«8 is Hamiltonian~3.1!. Numerical work shows tha
Eqs. ~4.1! and ~4.2! define uniquely«c8(v), i.e., the renor-
malization has two main domains: one where the iterati
of the transformation converge to an integrable Hamilton
H0—this domain is conjectured to be the set of Hamiltonia
that have a smooth invariant torus with frequencyv—and a
domain where the iterations diverge, and this domain is c
jectured to be the set of Hamiltonians that do not have
invariant torus with the frequencyv. For «85«c8(v), it was
shown numerically that the iterations converge to a stra
chaotic attractor containing all the relevant information
critical tori ~i.e., at the threshold of the break up! @9#. This
means that we conjecture that the critical thresholds obta
by the complete renormalization coincide~up to numerical
precision! with the thresholds of the break up of invaria
tori. In order to give support to this conjecture, we compa
the values we obtain with another independent meth
Greene’s residue criterion. This method consists in analyz
the stability of nearby periodic orbits~for instance, the ones
given by the truncations of the continued fraction expans
of the frequency of the torus!. For rigorous results on
Greene’s criterion, we refer to Refs.@18, 19#.

Figure 1 shows the value of«c8(v) for vP]0,1@ deter-
mined by the renormalization method withL520. A first
remark is that the last invariant torus is not the golden m
one as it is the case for the standard map and for Escan
paradigm Hamiltonian@9#: The torus with frequencyg
5(A521)/25@1,1,1,...# is broken for «c8(g)'0.029 95
whereas, for instance, the torus with frequencyv15(g
13)/55@1,2,1,1,1,...# persists until «c8(v1)'0.031 63.
1-4
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APPLICATION OF RENORMALIZATION TO THE . . . PHYSICAL REVIEW E 63 046201
These two values coincide up to numerical precision with
ones obtained by Greene’s residue criterion:«c

(G)(g)
'0.0299 and«c

(G)(v1)'0.0316.
The last KAM torus is broken for«* '0.033 34. Its fre-

quency is equal tov2'0.6976. The critical threshold of th
breakup of this torus with frequencyv2 obtained by
Greene’s residue criterion coincides with«* up to numerical
precision: «c

(G)(v2)'0.0333. For«.«* , there are no in-
variant tori left, and large scale stochasticity occurs: traj
tories can go from the resonance 1:1~located atA151! to
the resonance 0:1~located atA150!.

Between two neighboring main resonances 1:n and 1:n
12, quasiperiodic motion with frequencyvP]1/(n
12),1/n@ can occur for small«8. If «8 is greater than some
value «n , there is no longer any quasiperiodic motion
between these two resonances~and some chaotic trajectorie
can go from one resonance to the other!. Forn51, this value
is equal to«* for which all rotational invariant tori are bro
ken since the last invariant torus to break up is located
tween the resonances 1:1 and 1:3. We apply Chirikov’s
terion in order to have an estimate of«n @see Eq.~2.5!#,

«n
~c!5

1

4~n11!2 .

For the largest onen51, this value is equal to 0.0625 whic
is approximately twice the value obtained by renormali
tion. Escande’s approximate renormalization gives 0.035
the critical amplitude of the field for the last invariant toru
which is close to the value determined by the compl
renormalization method. This feature is expected to be
for quadratic Hamiltonians in the actions as it was poin
out in Refs.@20, 21#. In Ref. @22# it has been noticed that th
approximate renormalization usually slightly overestima
the real critical value.

Lin and Reichl@11# have developed a method adapted
the specific model~1.1! to compute the critical amplitude
«n . This method is based on the fact that as soon as the
invariant torus is broken, some trajectories starting near
of the main resonance~say 1:n! can approach the other ma
resonance 1:n12. Since the diffusion of these trajectorie
can be very slow~due in particular to the resonances of lo
order between two main neighboring resonances, and in

FIG. 1. Critical function of Hamiltonian system~3.1!.
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ticular in the region of phase space where the last KAM to
breaks up when the parameter«8 is close to its critical
value!, the values they obtained overestimate the ones
tained by renormalization. For instance, between 1:1 and
the critical value they obtained is approximately 0.0
60.001.

For n53, the estimate obtained by Chirikov’s criterion
«3

(c)'0.156, Escande-Doveil’s renormalization gives«3

'0.0080, whereas Lin and Reichl obtained«3'0.0081
60.0003. The approximate value of«3 obtained by the com-
plete renormalization is«3'0.0068. Again, the same com
ments apply to this case: Lin and Reichl’s method overe
mates the value obtained by renormalization because of
very slow diffusion of the trajectories between the res
nances 1:3 and 1:5 for critical or near-critical values of t
parameter«8.

B. Critical function «c„v;m,a,V…

We have studied the critical function«c8(v) of Hamil-
tonian ~2.3!. This rescaled Hamiltonian is equivalent to th
initial Hamiltonian ~2.2! with maV251 and in particular
with a51, m51, andV51. For other values ofa, m, andV,
the critical function«c(v;m,a,V) is equal to

«c~v;m,a,V!5maV2«c8S v

V
D ,

according to Eq.~2.4!. We notice that the argument of«c8 is
the rescaledfrequencyv/V since time has been rescaled b
a factorV. Thus the critical function varies like the square
the frequency of the field. In particular, the largest value
the parameter for which an invariant torus persists betw
the resonances 1:n and 1:n12 varies like

«n~V!5V2«n~V51!,

which is consistent with the numerical results found in R
@11#. This feature can be generalized to the following on
parameter family of Hamiltonians:

H~p,x,t !5
p2

2m
1VSQ~x!1«(

i
f i~x!gi~Vt !,

where gi are 2p periodic functions. This can be seen b
rescaling time by a factorV

H8~p,x,t8!5
1

V
HS p,x,

t8

V
D ,

and the actions by a factor 1/V

H9~p8,x,t8!5
1

V
H8~Vp8,x,t8!.

The fact that the critical coupling«c(v;m,a,V) is propor-
tional tom is general for a particle in an infinite square-we
potential driven by a perturbation depending onx and peri-
1-5
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odically ont. This is obtained by rescaling the momentum
a factor 1/m of the Hamiltonian

H~p,x,t !5
p2

2m
1VSQ~x!1«V~x,t !.

From the fact that the interaction with the field is propo
tional tox ~the interaction is of the form«x f(Vt) wheref is
2p periodic!, the critical function«c(v;m,a,V) is expected
to be proportional toa.

V. CONCLUSION

We have defined and studied numerically a renormal
tion transformation for a system of a particle in an infin
square-well potential driven by an external monochroma
field in order to determine the critical thresholds of the bre
up of invariant tori. Renormalization allows to obtain ve
ev

es

04620
-

c
k

precise information on the stability of Hamiltonian system
with two degrees of freedom, and in particular it allows
determine what kind of stable motions remains as a func
of the amplitude of the perturbation. We have checked t
for some specific frequencies, the thresholds obtained
renormalization coincide with the ones obtained by Green
residue criterion.

We have chosen to study a particle in an infinite squa
well potential driven by an external field because of its si
plicity, but the renormalization methods are very general a
can be applied directly to other types of Hamiltonian syste
with two effective degrees of freedom.
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